

STAR Plans

- RUN 9 -

ppLong @ 200 GeV

ppLong @ 500 GeV

- Assumptions on luminosity projections
- STAR physics goals
- STAR readiness

Jan Balewski

First things first: Commissioning

Major changes in the detector: will need to be commissioned

Time Projection Chamber DAQ1000: replacement of entire electronics chain (one sector run routinely in 2008)

Time of Flight: 75% of trays in place First run with more than ~few trays

Electromagnetic Calorimeter:

Shower Max: modification of electronics to decrease deadtime

Towers: rewire trigger to increase jet efficiency

Trigger: New electronics (QT boards) for basic detector systems (BBC, ZDC, etc.)

New Trigger Control Unit for greater flexibility

Overall goal: increase sampled/delivered ratio by lowering deadtime While there have been prototypes, and some commissioning can be done w/o

beam, need 1-2 weeks to shake down with stable beam

Executive Summary of STAR Goals for Run 9

- Commission major detector upgrades
- Physics and preparation for the future at 500 GeV
 - Establish local polarimetry of transverse components
 - W cross-section
 - W A_L: 10 pb⁻¹ sampled, longitudinal polarization 50%
 - **★** FOM P²L=2.5pb⁻¹
- If goals achieved switch to 200 GeV
 - pp2pp, transverse pol, 3.5 days, special beam conditions
- If the run is extended
 - highest priority 200 GeV p+p (STAR BUR)
 - BUR: 50 pb-1 sampled, 60% Longitudinal Polarization
 - ★ FOM $P^4L = 6.5 \text{ pb-1}$
- If above goal reached: AN at forward rapidity
 - switch to transverse beam polarization

Run 9 Beam Use Request @ 500 GeV

Assuming lowest luminosity projections

Goals for 500 GeV running

- (1) Establish local polarimetry at 500 GeV. Needs: HIGH POLARIZATION, CLEAN BEAM!
- (2) Benchmark the backgrounds in the W region relative to expectations
- (3) Identify a W signal in the BEMC
- (4) First A_L measurement for W+ in the BEMC

Needs FOM =
$$P^{2}*L = 2.5 \text{ pb}^{-1}$$
 sampled

For example, 20 pb⁻¹ delivered / 10 pb⁻¹ sampled at P = 50%

500 GeV longitudinal running

Goal 1: establish W signal reco STAR (using mid-rapidity e)

Pythia events. generated

- partonic pT>10 GeV/c
- thrown LT~5pb⁻¹ (QCD-eve), LT=170pb⁻¹ (W-eve)
- realistic vertex distribution sigZ=25 cm

Full STAR response simu & reco framework

W-algo, implemented

- vertex |z| < 60 cm
- highest 2x2 tower BEMC cluster w/ ET>15 GeV
- highest pT reco primary TPC track, |eta|<1
- match track to CG of EMC cluster:
 - delta eta < 0.03
 - delta phi < 0.03

(EMC & TPC have full coverage in phi, use log(ET) for cluster CG, EMC tower size: eta*phi=0.05*0.05)

W-algo NOT implemented

- EMC transverse, longitudinal shower profile
- isolation cone around reco electron
- veto if large ET in phi opposite to electron

W reco algorithm work in progress (Joe Seele, MIT)

500 GeV longitudinal running

Goal 2: First measurement of A_L for W

Effective signal ~250 (W⁺) ~60 (W⁻) with 10 pb⁻¹

○ FOM = 2.5pb⁻¹

O Polarization = 50%

Longitudinal

○ Luminosity: 10pb⁻¹

(assuming W-reco algo at mid rapidity yields S/B >1 for lepton ET>30 GeV)

Other opportunities at 500 GeV

 Jets and dijets: Δg(x) to lower x, different parton subprocesses

With projected integrated luminosity and polarization: new constraints for 0.05<x_T<0.1

- First measurement of A_N at 500 GeV with Forward Pion Detector and Forward Meson Spectrometer for mesons heavier than pi0
- Heavy flavor

Use the TOF, EMC, and reduced material to measure charm, non-photonic electrons, J/Ψ and Upsilon

Useful as check on theory

Dileptons: first from STAR

Expect significant φ→ee signal with ~100M minbias events

Projected sensitivity STAR pp→jet+X

Run 9 Beam Use Request @ 200 GeV

Assumed Run 9 projected performance for STAR BUR

Essential for STAR: high polarization (FOM \sim LP 4)
Goal is challenging but hoping that prior 500 GeV run will lead to high lumi on day 1

Projections following RHIC retreat: P = 0.60 - 0.65 / L_{ave} = 40·10³⁰ cm⁻²s⁻¹ STAR BUR is based on: P = 0.6 / ~100pb⁻¹ => 50pb⁻¹ recorded

BUR Goal: FOM ~ 6.5pb⁻¹

Will switch to transverse if achieve goal before end of run

Highlights of recent results - Gluon polarization

☐ Global analysis incl. RHIC pp data

- \circ Strong constraint on the size of Δg from RHIC data for 0.05<x<0.2
- Evidence for a small gluon polarization over a limited region of momentum fraction
- Important: Mapping x-dependence and extension of x-coverage needed!

Run 9 projections - Gluon polarization

- Substantial improvement on gluon polarization from inclusive measurements
- Complementary information from STAR and PHENIX (inclusive jets & pi0)

BUR Di-Jet production: 50pb-1 / 60% (FOM=6.5)

- Gluon polarization Di-Jets
 - Substantial improvement in Run 9 from Di-Jet production
 - Good agreement between
 LO MC evaluation and full
 NLO calculations

$$\eta_3 + \eta_4 = \ln \frac{x_1}{x_2}$$

Run 9 goals summary

- Higher sensitivity: Luminosity / DAQ 1000
- \circ Sensitivity to shape of $\times \Delta g(x)$: Correlation measurements
- \circ Sensitivity to low x: Forward calorimetry

○ Large impact for: FOM=6.5pb⁻¹ at 200GeV

 At 500GeV: Observe first W signal / First inclusive jet/hadron and di-jet measurements (Longitudinal beam polarization) / First A_N measurement (Transverse beam polarization)

Backup

Goals from p+p 200 GeV for heavy ion physics

Goal in the BUR: $\mathcal{L} = 50 \text{ pb}^{-1}$

Reference for Au in RHIC II era: last chance for a few years

Factor 5x increase in £ for rare probes vs. run 6
Non-photonic electrons: extend correlation
signatures for B vs. D

J/Ψ: use TOF and EMC for precision

Upsilon: 1st attempt to separate higher states

γ-hadron: currently p+p is limit on IAA

Large minbias dataset with DAQ1000: 300 M
Has not been possible in previous years, due to DAQ limitations
Fundamental baseline for untriggerable probes: D, dileptons, hadrons

http://www.c-ad.bnl.gov/esfd/CAD operation fy09.pdf

